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A Microstructurally Based Multi-Scale 2

Constitutive Model of Active Myocardial 3

Mechanics 4
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Roy C.P. Kerckhoffs, Jeffrey H. Omens, and Andrew D. McCulloch 6

Abstract Contraction of cardiac muscle cells provides the work for ventricu- 7

lar pumping. The primary component of this contractile stress development in 8

myocardium acts along the axis of the myofilaments; however, there may be a 9

component directed transversely as well. Biaxial testing of tonically activated 10

cardiac tissue has shown that myocardium can generate active stresses in the 11

transverse direction that are as high as 50 % of those developed along the fiber 12

axis. The microstructural basis for this is not clear. We hypothesized that transverse 13

active stresses are generated at the crossbridge and myofilament lattice scales 14

and transmitted via the myocardial laminar sheets as plane stress objects. To test 15

this hypothesis, we developed a multi-scale constitutive model accounting for 16

crossbridge and myofilament lattice structures as well as multicellular myofiber and 17

sheet angle dispersions. Integrating these properties in a finite element model of an 18

actively contracting myocardial tissue slice suggested that these mechanisms may 19

be sufficient to explain the results of biaxial tests in contracted myocardium. 20

22.1 Introduction 21

It is well known that cardiac muscle fibers develop active force along the longi- 22

tudinal myofibril axis of the myocyte. Both the actin and myosin filaments are 23

oriented along the myofibrils, and it is their relative motions that lead to muscle fiber 24

shortening and thickening. However, the acto-myosin crossbridges are not oriented 25
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parallel to the myofilaments. Structural studies suggest that the actin-binding region 26

of myosin when the crossbridge is in the strongly bound state forms an acute angle 27

between the binding site on actin and the backbone of the thick filament (Huxley 28

1985; Huxley and Kress 1985). Theoretical analysis suggests that this may give rise 29

to a significant component of force radial to the myofilament long axis (SchoenbergAQ2 30

1980a, b; Zahalak 1996). The magnitude of this radial component likely depends 31

on this binding angle, the filament spacing, and the sarcomere length. In biaxial 32

tests of an isolated myocardial tissue preparation, Lin and Yin (1998) showed that 33

the multicellular myocardium can generate significant systolic transverse stresses 34

(greater than 40 % of those in the fiber direction). They concluded that fiber angle 35

variations within the specimens alone would be insufficient to explain transverse 36

stresses of this magnitude, thus implicating an active cellular mechanism for 37

transverse tension generation. Finite element models of the heart have traditionally 38

used uniaxial active stress models (Guccione and McCulloch 1993; Hunter et al. 39

1998). However, it has been shown that the inclusion of transverse active stress 40

in models of ventricular mechanics significantly improves the agreement between 41

predicted systolic wall strains and experimentally measured deformations in the 42

intact heart (Usyk et al. 2000). 43

Thus, there is a need for microstructurally derived constitutive models to link 44

crossbridge models of tension development in sarcomeres to tissue-scale models 45

of systolic myocardial wall stress development. Here we consider structural mech- 46

anisms at four different scales of myocardial organization of multi-axial systolic 47

stress development and derive a hierarchical multi-scale microstructural model of 48

anisotropic systolic myocardial stress–strain relations. We assume that the input 49

to such a model is a lumped parameter model of calcium-dependent myofilament 50

activation and crossbridge interactions such as Markov model described recently 51

(Campbell et al. 2010). This model in turn could be activated by a model of dynamic 52

myocyte depolarization and excitation–contraction coupling such as the model by 53

Campbell et al. (2009). The twitch tension developed in these models depends on 54

processes at the crossbridge, sarcomere, and whole cell scales. However, we can 55

use the computed tension to derive the force in a single average crossbridge, for 56

the purposes of deriving a microstructural model of three-dimensional myocardial 57

active stresses. 58

We consider mechanisms at four scales: (1) In the single crossbridge scale, we 59

consider the two-dimensional static equilibrium of a strongly bound crossbridge to 60

resolve the crossbridge stiffness into longitudinal and transverse components, using 61

a similar approach to that proposed by Schoenberg (1980a, b) and accounting for 62

changes in lattice spacing with sarcomere length; (2) At the intracellular scale, we 63

consider the hexagonal arrangements of thick and thin filaments in the organized 64

myofilament lattice to derive how active stresses are developed anisotropically 65

within myocytes; (3) At the multicellular single laminar sheet scale, we integrate 66

these anisotropic stress tensors within a laminar sheet to derive the tissue-scale 67

effects of dispersion of myofibers about the mean fiber orientation (Karlon et al. 68

1998); and (4) finally we consider the effects of distributions of myocardial 69

laminae and their orientations within the myocardium on orthotropic systolic stress 70

development (LeGrice et al. 1995). 71
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In order to test the resulting multi-scale microstructural constitutive law, we 72

integrated it into a three-dimensional finite element model. The model includes 73

measurements of fiber-sheet distributions in one dog. The stresses developed in the 74

model were then compared with those in the biaxial tests performed in tonically 75

activated rabbit myocardium by Lin and Yin (1998). 76

22.2 Methods 77

22.2.1 Histological Measurements 78

The histological measurements used in the current model were taken from a canine 79

heart used in a previous study in our laboratory (Coppola et al. 2007). All animal 80

studies were performed according to the National Institutes of Health Guide for the 81

Care and Use of Laboratory Animals. All protocols were approved by the Animal 82

Subjects Committee of the University of California, San Diego, which is accredited 83

by the American Association for Accreditation of Laboratory Animal Care. An 84

adult mongrel dog was instrumented as described in detail in Coppola et al. (2007). 85

The heart was fixed in situ at end-diastolic pressure with 2.5 % gluteraldehyde and 86

stored in 10 % formalin. The heart was then sectioned for histology as previously 87

described (Ashikaga et al. 2004). These sections are cut perpendicular to the mean 88

fiber direction so that the sheet angle ˇ can be visualized directly. Sheet angles were 89

measured at each transmural depth using the method of Karlon et al. (1998). Ten 90

10-�m sections were analyzed ( 50–70 sheet angles per section) for a total of about 91

600 measurements of the sheet angle, ˇ, across the wall thickness. These sheet angle 92

populations were incorporated into the finite element model. 93

22.2.2 Crossbridge Mechanics 94

The static equilibrium of the strongly bound myosin molecule based on a 2D 95

simplification of the model originally proposed by Schoenberg (1980a, b) was used 96

to resolve crossbridge tension into axial and transverse (radial) components. The 97

axial and radial stiffnesses of the structure were then derived and used to compute 98

the resulting axial and radial stresses in the hexagonal sarcomere lattice model. 99

Tension in the elastic S2 segment is resolved into axial and transverse compo- 100

nents using a two-dimensional force and moment balance derived from the geometry 101

shown in Fig. 22.1 and assuming no net moment at the attachment of the S1 head 102

to the thin filament. To derive crossbridge stiffness components, the lattice spacing 103

of the crossbridge model is displaced by a small value and the resulting change in 104

the axial and radial forces is obtained (Fig. 22.1). This change in force is then used
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Fig. 22.1 Computing the crossbridge stiffness in the axial and radial direction based on the
geometry of the myosin S2 segment. The myosin S2 segment makes an angle ˛ with the thick
filament of myosin

to derive the instantaneous stiffnesses in the two directions (Chuang et al. 2012). It 105

can be shown that the transverse to fiber crossbridge stiffness-ratio is 106

Kt

Kf
D lS2 � l0cos2˛

lS2 � l0sin2˛
(22.1)

where lS2 is the length of the S2 segment of the crossbridge, l0 is the resting length 107

of the crossbridge considering the S2 segment to be a linear spring, and ˛ is the 108

angle between the S2 segment and the thick filament of the myosin molecule. 109

22.2.3 Lattice Model 110

A hexagonal lattice model of the sarcomeres was used to derive transverse and axial 111

stresses as a function of the lattice spacing and crossbridge stiffness components. 112

The lateral force interactions in a myofilament lattice due to crossbridge formation 113

between thick and thin filaments can be analyzed in two perpendicular planes: one 114

parallel to the axis of the sarcomeres, and one perpendicular to the axis of the 115

sarcomeres. Figure 22.2a shows the cross-section in this perpendicular plane. We 116

make use of energy conservation in a hexagonal unit cell of width �0 and axial 117

length ı0 consisting of three pairs of crossbridges as shown in Fig. 22.2b to derive 118

the resultant axial and radial stress components. For this analysis, the three pairs of 119

crossbridges are assumed to be in the same plane. 120

The complete derivation for the strain analysis is given in Chuang et al. (2012). 121

In terms of the ratio of the transverse to the radial stiffness (Kt/Kf) derived from
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Fig. 22.2 (a) Lattice structure showing the cross-section of the thick myosin filaments (red) and
the thin actin filaments (blue) in a 2D view. The section consists of three pairs of crossbridges. A
single unit cell used for the analysis with six crossbridges is highlighted in yellow. (b) Axial view
of sarcomeres showing three sets of three pairs of crossbridges spaced 120ı apart. The unit cell
consisting of three pairs of crossbridges and axial length ı0 is marked in yellow

the crossbridge analysis, the ratio of the stresses in the radial direction to the axial 122

direction derived for the lattice is 123

� D St

Sf
D 1

2

�
�

ı0

�
Kt

Kf
(22.2)

22.2.4 Active Systolic Stress 124

We use the stress ratio derived from the previous section to derive the active stress 125

tensor at the tissue level. At each integration point of the finite element model, the 126

active fiber stress of a myocyte is calculated from the Guccione activation model 127

(Guccione and McCulloch 1993) as a function of sarcomere length and time. From 128

this fiber stress, Sf, we use (22.2) to obtain the transverse stress St D � • Sf at the 129

single myocyte scale. We assume the resulting myocyte systolic active stress is 130

transversely isotropic. Now considering myocytes distributed within a planar sheet 131

assumed to behave as a plane stress element due to weak sheet-sheet coupling, then
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there can be no stress acting in the sheet-normal direction. Therefore, contribution 132

of a single myocyte directed parallel to the mean fiber orientation within a sheet is 133

T D
2
4 Sf 0 0

0 � � Sf 0

0 0 0

3
5 with respect to W fef; es; eng (22.3)

where ef represents the fiber direction, es represents the within-sheet direction, and 134

en represents the cross-sheet direction associated with this individual sheet. 135

We assume that all myofibers within a sheet are parallel to the plane of the sheet 136

but are distributed with an angular distribution f (®) with respect to the mean fiber 137

direction (see Fig. 22.3a). Taking into account this distribution, the stresses in this 138

single sheet can be obtained by integrating: 139

Tsheet D
Z �=2

��=2

R' � T � RT
' � f .'/ � d'

R' D
2
4�

cos .'/ sin .'/ 0

sin .'/ cos .'/ 0

0 0 1

3
5 with respect to W fef; es; eng

(22.4)

Fig. 22.3 Description of angles in model. (a) Schematic representation of a single sheet. e
0

f
represents the sheet mean fiber axis, es represents the direction transverse to the fiber direction but
within the sheet, and en represents the sheet-normal direction (across the thickness of the sheet). ®

represents the deviation of a single myocytes fiber axis relative to the mean fiber axis. ® is measured
in the (e

0

f, es) plane. (b) Schematic representation of several sheets. ef represents the tissue mean
fiber axis, er represents the radial direction, and ec is perpendicular to both (ec D er � ef). Each
sheet has a sheet mean fiber axis at an angle � to the tissue mean fiber axis, in the (ef , er) plane.
Each sheet also has an angle ˇ, which is in the (ec, er) plane
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where f (®) represents the distribution of ®, which we define to have a mean of zero. 140

Tsheet remains a plane stress, but it is no longer a diagonal tensor in general. In other 141

words, there may be a shear stress component due to the dispersion of ®® within the 142

sheet. However, if the distribution is symmetric, the shear terms cancel out making 143

the tensor diagonal. 144

In the finite element formulation, stresses are integrated at the tissue scale. At 145

this scale, there are many sheets. Each sheet has an orientation associated with it, 146

which can be described as a function of two angles: ˇ, which is the histologically 147

measured sheet angle (Costa et al. 1999) and � , which is the angle relative to the 148

mean fiber direction (about the sheet direction). For an illustration of these angles, 149

see Fig. 22.3b. Now the stress at the tissue level can be integrated: 150

Ttissue D
“

R� RˇTsheetRT
ˇRT

� f .�/ f .ˇ/ d�dˇ

Rˇ D
2
4 1 0 0

0 sin .ˇ/ cos .ˇ/

0 � cos .ˇ/ sin .ˇ/

3
5 ; R� D

2
4 cos .�/ 0 sin .�/

0 1 0

� sin .�/ 0 cos .�/

3
5

with respect to W fef; ec; erg

(22.5)

where ef represents the fiber direction, er represents the radial (transmural) direction, 151

and ec represents the cross-fiber direction (ec D er � ef) associated with the bulk 152

tissue; f (�) and f (ˇ) represent the distributions of � and ˇ, respectively. Note that 153

the different format of Rˇ is consistent with Costa’s definition (Costa et al. 1999). 154

The angles ®, � , and ˇ change through time as the heart deforms. In other words, 155

they are functions of Lagrangian strain (E), as shown in the Appendices 1 and 2.AQ3 156

Because these quantities vary through time, the integration has to be performed 157

at each time step of the finite element solver. However, if we assume there is no 158

interaction between the angles, the integration terms can be separated and can be 159

evaluated by evaluating the following definite integrals: 160

Icos2 � D
Z �=2

��=2

cos2� f .�/ d�

Icos � D
Z �=2

��=2

cos � f .�/ d�

Isin2 � D
Z �=2

��=2

sin2� f .�/ d�

(22.6)

where f represents a Von-Mises distribution for the angles and � represents � , ˇ, 161

or ®. More details are given in the Appendices 1 and 2. In addition, as shown 162

in the Appendices 1 and 2, the effect of the strain on these distributions is not 163

significant in the range of strains experienced by a typical myocardial tissue. Hence, 164

these functions can be pre-computed before attempting to solve the finite element 165

problem. 166
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Finally, (22.5) can be expanded in terms of the distributions of the angles in the 167

reference configuration. The equations for all six independent terms of the stress 168

tensor look similar and are of the following form: 169

Ttissue .j; k/ D Sf:Fjk .Ii .�/ ; �/

where i D cos2�; cos �; sin2� � D ˇ; '; �
(22.7)

Fjk are pre-computable functions of the angle distributions. The actual form of these 170

functions is given in the Appendices 1 and 2. 171

22.2.5 Simplifying Assumptions 172

In addition to the assumptions inherent to the construction of the model, a few 173

additional simplifying assumptions were made. Because we have no detailed 174

measurements of the angles ® and � , these angles were replaced with a Von-Mises 175

distribution centered about 0ı with a fiber dispersion standard deviation of 12ı
176

(Karlon et al. 1998). This simplifies the resulting model due to the symmetry of 177

these distributions, making the active stress tensor diagonal. 178

22.2.6 Finite Element Computational Model 179

The crossbridge and lattice models were derived analytically with MATLAB code 180

utilizing a symbolic library. The resulting code was then implemented into the 181

laboratory’s custom finite element modeling environment (Continuity 6.3, www. 182

continuity.ucsd.edu). 183

The active contraction in a continuum tissue was simulated with a nonlinear 184

finite element model of a tissue slab. The chosen model includes passive material 185

properties and a biophysically based tension generation. It is a 27-node, 8-element 186

mesh of a tissue sample, which is synchronously activated. 187

Myocardial stresses are determined at each integration point within the finite 188

element mesh by a summation of passive stress (due to distension) and active stress 189

(due to crossbridge cycling). The passive stress model described by Guccione et al. 190

(1991) is used as is. The active stresses are determined by the model described in 191

the previous section. 192

To simulate equi-biaxial tests, the tissue was first activated to maximum active 193

tension corresponding to the strong attachment of all crossbridges. This gives a new 194

geometry where the passive stresses generated in the tissue are in equilibrium with 195

the generated active stresses (Fig. 22.4). This geometry was then stretched equi- 196

biaxially to generate curves similar to those reported by Lin and Yin (1998). Volume 197

conservation was enforced using a semi-incompressible penalty formulation (Doll 198

and Schweizerhof 2000). 199

www.continuity.ucsd.edu
www.continuity.ucsd.edu
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Fig. 22.4 Simulation of equi-biaxial stretch. The sample is first activated fully to obtain the
geometry corresponding to the fully activated state (middle). The geometry is then stretched equally
to simulate an equi-biaxial stretch

22.3 Results 200

22.3.1 Sheet Angle Measurements 201

Automated measurements of sheet angle were performed on 10 �m sections at every 202

1 mm depth through the ventricular wall (ten depths). Figure 22.5 shows an example 203

of one section, as well as the results of the automated processing scheme, which was 204

performed as described by Karlon et al. (1998). Results from the subendocardial and 205

subepicardial regions are shown in Fig. 22.6. Note that there is substantial dispersion 206

about the mean sheet angle (	 > 10ı), particularly deeper in the wall. 207

For our simulations, we used the average dispersion data from these distributions. 208

The average standard deviation of the dispersion is found to be about 30ı. 209

This corresponds to a concentration parameter (
) value of 4 in the Von-Mises 210

distribution. However, we did not include the bimodal distribution of sheets in our 211

simulations since we were interested only in biaxial tests in isolated myocardial 212

tissue. 213

22.3.2 Lattice Model 214

The effect of the lattice spacing on the transverse to fiber stress ratio was computed 215

using the crossbridge and lattice model at typical lattice-spacing values (Julian et al. 216
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Fig. 22.5 Automated measurements of the sheet angle ˇ. (a) 10 �m section of myocardium
cut perpendicular to fiber angles. Gaps in tissue represent cleavage planes between myocardial
sheets, which have opened up as tissue was allowed to desiccate for 10 min. In this image, two
distinct populations of sheets are present. (b) Enlarged view of tissue section showing automated
measurements of sheet angle. The region of interest for each measurement was 76 �m2

1978; Schoenberg 1980a, b; Rayment et al. 1993). The lattice spacing is measured 217

as the distance between adjacent actin and myosin filaments. The parameter values 218

used for the crossbridge model are tabulated in Table 22.1. It can be seen that the 219

radial to axial stress ratio is nonlinearly dependent on the lattice spacing. 220

It can be seen from Fig. 22.7 that this ratio of stresses depends on the length of 221

the myosin S2 segment at lattice spacing corresponding to the unloaded sarcomere 222

length. This length determines the angle the S2 segment makes with the myosin 223

thick filament and hence in turn mediates the transverse force generated by the 224

crossbridge. 225
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Fig. 22.6 Experimental
distributions of the sheet
angle ˇ. Rose plots (circular
histograms) showing the
distribution of the sheet angle
ˇ in the sub-epicardium (a)
and sub-endocardium (b).
0ı/180ı indicates that the
sheet lie along the radial
direction. It is clear that this
animal has a second
population of sheet angles in
the sub-endocardium

22.3.3 Finite Element Model 226

The effect of fiber dispersion was tested using a finite element computational model 227

of a rectangular slab of myocardium. The dimensions of the slab relative to the 228

actual wall thickness of the heart are small such that sheet angle does not vary 229

within the slab. The final form of the active stress-coupling model is given in the 230

Appendices 1 and 2. Equi-biaxial stretch in a fully activated myocardial tissue was 231
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Table 22.1 Parameter values for the crossbridge and lattice model

Parameter Description Value Reference

t3.1l0 Resting S2 segment length 12 nm Williams et al. (2010)a

t3.2lS20 S2 segment length at reference lattice
spacing

16–20 nm

t3.3lS1 S1 segment length 11 nm Schoenberg (1980a, b)a

t3.4˛S1 Angle of S1 attachment 45ı Julian et al. (1978)
t3.5ı0 Axial distance of three myosin head

pairs
43.5 nm Craig and Woodhead (2006)

t3.6�0 Lattice spacing at unloaded sarcomere
length

19 nm

aValues projected to 2D from a 3D model

Fig. 22.7 Plot of the transverse to axial stress ratio as a function of lattice spacing between the
actin and myosin filaments. This ratio is also a function of the length of the S2 myosin segment at
reference lattice spacing as shown by the family of curves

simulated. Three simulations at sheet angles 0ı, 45ı, and 90ı with respect to the 232

second stretch direction were performed. Figure 22.8 shows the total stresses in the 233

fiber and cross-fiber direction for the three sheet angles. It can be seen that the ratio 234

of the cross-fiber to fiber stress varies depending on the sheet angle orientation. 235

These may explain some of the variations in the experimental measurements by Lin 236

and Yin (1998). In addition, this shows that the angle of the sheet relative to the 237

applied stretch has a large effect on the total generated stress. 238
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Fig. 22.8 Total fiber and
cross-fiber stresses for three
sheet angle orientations: 0ı

(a), 45ı (b), and 90ı (c). It
can be seen that the ratio of
the transverse to fiber stresses
varies with the sheet angles

Figure 22.9 shows the active normal stresses generated in sheet coordinates as a 239

function of the equi-biaxial stretch with the sheets parallel to the stretch plane. The 240

experimental measurements given by Lin and Yin (1998) at one equi-biaxial stretch 241

level are shown as points. It can be seen that on an average, the cross-fiber (sheet) 242

stresses were around 40 % of the fiber stresses and the stresses in the sheet-normal 243

direction were around 10 % of the fiber stresses. The active stress generated in the 244

sheet-normal direction is only due to dispersion in the sheet angles. 245
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Fig. 22.9 Active fiber, cross-fiber, and sheet-normal stress generated in the tissue during equi-
biaxial stretch. The experimental values from Lin and Yin (1998) at an equi-biaxial stretch of 1.16
are marked with dots

22.4 Discussion 246

In this study, we derive a multi-scale mathematical model to investigate the 247

relationship between active force development within the sarcomere of a cardiac 248

myocyte and stress transverse to the fiber orientation at the tissue level. The 249

model incorporates structural dispersion including histological measurements of 250

sheet orientation, and incorporates crossbridge and sarcomere lattice geometry. The 251

results of the finite element model are compared with measured experimental stress 252

in biaxial deformation tests. The results suggest that these mechanisms can explain 253

the source of forces generated transverse to the fiber direction in myocardial tissue. 254

The transverse force generation in the crossbridge model is sensitive to the 255

parameters of the model, such as the length of the S1 and S2 segments. While esti- 256

mates for these quantities vary between publications and muscle types and species, 257

they are measurable microstructural properties rather than arbitrary parameters. 258

Our analysis suggests that the strain dependence of fiber and sheet dispersion is 259

very small and unlikely to affect the analysis. However, the strain dependence on 260

lattice spacing gives rise to larger transverse stresses at larger lattice spacing. In the 261

current model, we assume, based on electron microscopy and X-ray crystallography, 262

that lattice spacing is only determined by fiber strain because the lattice isotropically 263

expands in the transverse direction as sarcomeres shorten to maintain approximately 264

constant sarcomere volume. This implies that anisotropic macroscopic strains in the 265

myocardium must be accommodated either by rearrangement of myofibrils within 266

myocytes, myocytes within sheets, or sheets within the tissue. 267
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Since we consider the sheet to be a plane stress object, transverse stresses are 268

not transmitted in the sheet-normal direction. The only mechanism of active stress 269

generation in the sheet-normal direction in our model is through sheet dispersion. 270

This is probably not completely accurate since some form of inter-sheet couplingAQ4 271

that can transmit active stresses in the sheet-normal direction. Myocardial sheets 272

have also been shown to have unique passive material properties. For instance, they 273

are stiffer within the plane of the sheet than across it (Dokos et al. 2002). Despite 274

this, it has been shown that simulations of systole are insensitive to changes in 275

parameters controlling passive sheet properties (Usyk et al. 2000). 276

In conclusion, we have developed a mathematical model linking scales from the 277

myofilament crossbridge up to the tissue-scale myocardial continuum. The stress 278

developed transverse to the myofilaments, in combination with dispersions of the 279

muscle fibers and sheets, leads to significant transverse stress at the tissue level 280

and found in previous experimental tests. The transverse active stress development 281

in the tissue depends on structural geometry at multiple scales in the tissue. The 282

orientation of the sheets relative to tissue deformation plays an important role 283

in the total stress that is measured experimentally. The strain dependence of the 284

transverse stress developed at the crossbridge level is significant while the strain 285

dependence on the dispersion is found to be small as shown in the Appendices 1 286

and 2. Thus, we have developed a microstructurally based multi-scale model of 287

active myocardial mechanics that takes into account the crossbridge and sarcomere 288

lattice geometry and the myocardial sheet structure. Such a theoretical model can be 289

easily incorporated into realistic ventricular geometry to simulate cardiac function 290

that match closely with experimental observations. 291

Acknowledgement Supported by NIH grants 5P01HL46345, GM103426, 1R01HL96544, 292

GM094503, 1RO1HL091036, and 1R01HL105242. 293

A.1 Appendix 1: Fiber-Sheet Dispersion Effects 294

on Active Stress 295

Here we give details of the derivation of the fiber-sheet dispersion effects on active 296

stress from (22.5). We used a Von-Mises distribution for the three angles. The 297

probability density of a Von-Mises distribution is given by the following equation: 298

f .�/ D e
 cos �

2�I0 .
/
(22.8)
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where I0 is the modified Bessel function of order 0 and 
 is called the concentration 299

parameter that controls the standard deviation of the distribution. The components 300

of the stress tensor can be computed to be 301

T11 D Sf

h
�

�
Isin2 'Icos2 � C Icos2 ˇIcos2 ' Isin2 �

�

C
�

Icos2 'Icos2 � C Icos2 ˇIsin2 'Isin2 �

�i

T22 D Sf

h
�

�
Isin2 ˇIcos2 '

�
C

�
Isin2 ˇIsin2 '

�i

T33 D Sf

h
�

�
Isin2 'Isin2 � C Icos2 ˇIcos2 'Icos2 �

�

C
�

Icos2 'Isin2 � C Icos2 ˇIsin2 'Icos2 �

�i

(22.9)

where the integrals I can be computed numerically from the distribution. For a 302

standard dispersion of 12ı for ® and � , and a 30ı for b, we get the active stress 303

components to be given by 304

T11 D Sf Œ0:067 � C 0:924�

T22 D Sf Œ0:201 � C 0:008�

T33 D Sf Œ0:724 � C 0:067�

(22.10)

These equations were then used in the finite element model and the k computed 305

from the lattice model is used as the input to these models. 306

A.2 Appendix 2: Strain Dependence of Angle Distributions 307

In continuum mechanics, deformations of bodies create changes in angles. For 308

example, consider the two-dimensional example in Fig. 22.10. Suppose the fibers 309

in this tissue are originally oriented at an angle �0. After undergoing deformation, 310

this angle is represented by � . The relationship between � and �0 can be derived 311

from continuum mechanics principles (Fung 1993), and is given by: 312
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Fig. A.1 Schematic diagram representing the change in angle � as a body deforms. In this
example, due to horizontal shortening and vertical lengthening, � > �0. The angle would also be
affected by shearing deformation (not shown)

cos � D u1Cu2p
u1Cu1

p
u2Cu2

D

�
1

0

� �
C11 C12

C12 C22

� �
cos �0

sin �0

�

p
C11

s�
cos �0
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�

D C11 cos �0 C C12 sin �0p
C11

p
C11cos2�0 C 2C12 sin �0 cos �0 C C22sin2�0

(22.11)

313

In terms of the strain components E, the cos(� ) can be computed from the 314

equation, 315

cos � D .2E11 C 1/ cos �0 C 2E12 sin �0p
.2E11 C 1/

r�
2E11cos2�0 C 4E12 sin �0 cos �0 C 2E22sin2�0 C 1

(22.12)

In order to understand the strain dependence of the fiber dispersion functions, 316

several numerical experiments were performed. Samples of 5000 angles were drawn 317

from a Von-Mises distribution of known 
, the concentration parameter, which gives 318

a standard deviation of 12ı. The change in the angle � is computed for different 319

values of biaxial strains, and the new standard deviation and the › parameter were 320

computed for the resulting distribution (Fig. 22.11). This was then compared withAQ5 321

directly computing the change in the standard deviation angle using (22.12). It can
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Fig. A.2 Effect of strain on fiber distribution. A positive transverse strain increases the standard
deviation of the angle distribution while a positive fiber strain decreases the standard deviation

be seen from Fig. 22.12 that the predicted standard deviations are within few degrees 322

of the predicted values. Under shear strain, the mean is not zero, but this deviation 323

in the mean is <2ı for reasonable shear strains. 324

Next, the strain dependence of the active stress components was computed 325

(Fig. 22.13). The concentration parameter was varied from 10 to 40 for ® and � , 326

and from 2 to 10 for the sheet angle ˇ. These correspond to a standard deviation of 327

18ı–9ı for ® and � , and 48ı–18ı for ˇ, respectively. It can be seen from Fig. 22.14 328

that the strain dependence is very small for practical values of standard deviation 329

of fiber dispersion and strains. Consequently, the strain dependence can be ignored 330

for typical strains in a myocardium. In addition, if the strain values are extreme, 331

the strain dependence can be incorporated by computing the new standard deviation 332

of the distribution and using the concentration parameter that corresponds to this 333

standard deviation value in the simulations. 334
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Fig. A.3 Comparison of
actual standard deviation with
predicted values for different
strains
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Fig. A.4 Effect of combined
biaxial strains on standard
deviation and its prediction
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Fig. A.5 Effect of the
concentration parameter 
 on
the diagonal components of
the active stress tensor. It can
be seen that the strain
dependence is very small and
we can ignore it for practical
simulations
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